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Abstract—Process discovery involves the construction of pro-
cess models to describe real-world systems, allowing study and
improvement of systems based on their data footprints. One
quality criterion of discovered models is model-system gener-
alization, which assesses how well a model describes both seen
and unseen processes of the system. When the system itself is
unknown, event logs must be used to determine model-system
relationships, such as generalization. Here we investigate event
log representativeness, which measures how well an event log
represents its generative system, exploring the extent to which
representativeness affects the accuracy of generalization estima-
tion. Our focus is on a bootstrap approach, adopting a simple
approximation for log representativeness that correlates strongly
with previous measures. Extensive experiments show that log
representativeness substantially affects generalization estimation
accuracy: highly representative logs can directly represent the
system for measuring model generalization, while less represen-
tative logs require additional estimations. We also provide insights
into bootstrap generalization estimation: reasonable assumptions
on the process discovery technique allow the bootstrap method to
yield more accurate estimates of generalization for model-system
precision than for model-system recall.

Index Terms—process mining, process discovery, generaliza-
tion, log representativeness

I. Introduction

Process mining is a research discipline that analyzes busi-
ness processes through event logs (or just logs) which record
the actions executed by information systems. Logs act as a
primary data source, and their quality significantly impacts the
overall success of process mining techniques. This importance
is reflected in the process mining manifesto, which asserts that
“Event Data Should Be Treated as First-Class Citizens” [1].

Process discovery, an area within process mining, stud-
ies ways to construct process models from logs. A model
affords insights into the dynamics of the system, enabling
organizations to visualize process flows, and hence identify
inefficiencies and opportunities. Generalization is an important
aspect of process model quality. It assesses the likelihood that
the model describes the unseen behaviors of the system, that
is, those that are not in evidence in the log [2]. Understanding
the generalization of a model is crucial, as it determines the
ability of the model to describe the system faithfully.

Real-world systems often lack explicit descriptions, mean-
ing that estimation of the generalization of a model might rely
exclusively on the log. Indeed, most existing generalization
measures attempt to estimate system behavior based solely on
log data. However, if a log already effectively represents the

system, indicating high representativeness, further estimation
efforts may be unnecessary, or even lead to inaccuracies. It is
thus interesting to categorize when complex system behavior
estimation methods should be employed, versus utilizing the
log directly as the system.

To explore the relation between log representativeness and
generalization estimation we adopt the log representativeness
concept proposed by Kabierski et al. [3], and the bootstrap
generalization method of Polyvyanyy et al. [4] which utilizes
logs to estimate system behavior. Our analysis is supported
by extensive experiments (17.1 CPU-years of computation) to
investigate this relationship. Specifically:
• We introduce a simple approximation for the log represen-

tativeness measure [3] to estimate how well a log captures
all distinct behaviors possible in the system.

• We characterize the relation between the log representative-
ness and the effectiveness of estimation of generalization by
employing bootstrap generalization [4].

• We argue that under reasonable assumptions the bootstrap
estimates model-system precision better than model-system
recall, providing insights into bootstrap generalization.

Section II discusses related work in log quality assessment
and generalization methods, and Section III covers process
mining fundamentals, log representativeness, and bootstrap
generalization. Section IV then introduces an approximation
for log representativeness and studies the relation between
representativeness and generalization estimation. Section V
discusses estimation of model-system precision and recall via
the bootstrap approach. Section VI then concludes the paper.

II. RelatedWork

We first review log quality and generalization measures.

A. Log Quality

We rely on event logs to reflect system activity. However,
the fact that the system is unknown makes it difficult to
quantify the relationship between a log and its source. We first
consider how this log-system connection has been tackled.

Kabierski et al. [3] suggest that log representativeness, how
well the log captures the system characteristics, be assessed by
mapping log analysis to “species discovery.” They employ esti-
mators from biodiversity research, including species richness,
sample completeness, and sample coverage; in a framework
that treats as different “species” the activities within a trace,



trace variants, directly-follows relations between activities, and
pairs of activities with aggregated durations. Doing so allows
analysis of the data volume required to achieve any desired
level of completeness. The estimators rely on observation
frequency, notably data appearing only once (singletons) or
twice (doubletons), which are affected by the log collection
duration. In real-world scenarios, low-frequency data points
might represent noise rather than system behavior [5].

To establish a correlation between the quality of a log and
the discovered model, Van der Werf et al. [6] introduce several
measures of log quality, focusing on the accuracy of samples
extracted from a well-represented log, and considering the
error between expected values and actual occurrences. Van der
Werf et al. employ a statistical framework to quantify the gap
between the observed sample behavior and expected event log
behavior based on the sampling ratio. When the log accurately
represents the system, it can serve as a proxy for the system’s
behavior, and the sampled log mirrors an event log. These
measures are applicable primarily when the expected behavior
of the system is known and are less well suited to assessing
how well a given log represents an unknown system.

Completeness is another important concept connected to
log-system behavior. Unlike representativeness, which prior-
itizes quality, completeness emphasizes the quantity of infor-
mation. A complete log would ideally contain data for every
possible process, whereas a representative log captures typical
process characteristics, encompassing a sufficient variety of
process information to accurately reflect the real-world system.

Van Hee et al. [7] propose a measure to estimate a prob-
abilistic lower bound for completeness for workflow nets. In
this context completeness means the log includes at least one
trace for every transition in the underlying system.

Completeness was examined for a noise-free log of a finite
system using a probabilistic approach. It was defined as the
ratio of observed distinct data to total distinct data, where data
is traces for global completeness [8] and direct successors for
local completeness [9, 10]. This estimation considers observed
data classes and log size at a specified confidence level.

Log completeness has also been considered via the lens of
species discovery [11, 12], similar to the work of Kabierski
et al. [3]. By applying several richness estimators and consid-
ering traces as species, Pei et al. [11] estimate the extent to
which the log captures the full spectrum of process variations.

Our study in this paper adopts the log representativeness
framework proposed by Kabierski et al. [3]. Specifically, we
utilize their sample coverage-based representativeness mea-
sure, focusing on treating trace variants as species, to capture
the behavioral aspect aligning with the definition of general-
ization. Based on biodiversity research, this approach has the
potential to offer robust and comprehensive assessments of log
representativeness. Details are provided in Section III-B. Ad-
ditionally, Section IV-A, presents a simplified approximation
that exhibits a high correlation value and avoids tabulation
of singletons and doubletons, and hence is less sensitive to
variations in log collection duration or noise.

B. Generalization
Measuring the generalization of a discovered process model

requires estimating the unseen behavior of the system. Rela-
tively few attempts have been made to quantify generalization
in the process mining literature.

Alignment generalization [13] evaluates model generaliza-
tion by mapping log events onto model states as activity obser-
vations. Generalization is assessed via state visit frequencies,
and the variety of activities observed. A high frequency of state
visits alongside a limited range of observed activities suggests
effective generalization, and indicates the model’s ability to
predict activities in response to unseen events.

Vanden Broucke et al. [14] propose weighted behavioral
generalization, identifying “negative events” unlikely to occur
at specific points in a trace. A scoring mechanism for negative
events estimates weighted confidence in their exclusion. Gen-
eralization is then the ratio of allowed generalizations (negative
events but with low confidence) to the allowed plus disallowed
generalizations (events not replayable by the model).

Anti-alignment based generalization [15] measures general-
ization analyzing “anti-alignments,” traces that are described
by the model but deviate from the traces in the log. The
intuition is that if a model effectively generalizes, the log
probably covers a significant portion of the system’s state
space. Consequently, new, unseen traces are more likely to
involve new paths that employ existing states, rather than
require entirely new states; and hence the measure favors
models that allow new traces using seen states.

In adversarial system variant approximation [16], sequence
generative adversarial networks (SGANs) are employed to
approximate the trace distribution of system behavior based
on event log data. Unobserved traces are sampled from the
SGAN, or using the Metropolis-Hastings algorithm. The de-
gree of a process model’s relation to the system behavior is
quantified using observed and estimated traces.

The Token-based repair generalization [17] approach is
based on the intuition that if all parts of the process model are
frequently used, then it is likely to be generic. The result is a
mechanism that utilizes alignment from replay fitness to assess
generalization. Van der Aalst [2] proposes two such measures
based on redundancy of fitting behavior, with frequently-fitting
traces signaling higher generalization.

Alpha precision [18] evaluates model-system precision
rather than generalization, focusing on the model’s capacity to
represent significant system behavior, defined by a significance
level, α. It evaluates the probability of the model generating
traces more frequently than α compared to the system, dif-
fering from the broader definition of generalization, which
encompasses all unobserved behavior. Limitations include
assumptions about a finite system behavior and the necessity
for knowledge or estimation of system size. Additionally, the
measure’s sensitivity to the α value requires careful selection.

Our analysis employs bootstrap generalization [4], de-
scribed in detail in Section III-C, and chosen for its demon-
strated consistency as an estimator, its applicability to infinite
systems, and its foundation in established statistical methods.



III. Preliminaries

We now consider process mining, species discovery-based
log representativeness, and bootstrap generalization.

A. Systems, Event Logs, Models, and Languages

Let S be a system, and A be a finite set containing all
possible activities performed by S . Then A∗ encompasses all
possible sequences of activities (traces) over A. The language
of a system, denoted by lang(S ), is the set of traces that S can
generate, which may be infinite, represented by lang(S ) ⊆ A∗.

During its operation, S generates a finite event log L that
is a multiset of traces. The size of L, denoted by |L|, is the
total number of traces in L. The language of L, denoted by
lang(L) ⊂ A∗, is its support set Supp (L).

A model M is discovered from L to represent S . The
language of a model is the set of traces described by M,
denoted by lang(M) ⊆ A∗. The closer the languages lang(M)
and lang(S ) are, the higher the generalization of the model M.

For a language lang, the magnitude of its trace collection
can be quantified using a measure m, encompassing con-
cepts such as cardinality and entropy [19]. This quantification
(m (lang)) enables comparative analyses between languages.

B. Log Representativeness Using Species Discovery

To understand the species-coverage-based log representa-
tiveness introduced by Kabierski et al. [3] we first consider
species estimation in biology. Given a sample Q of size q
(q = |Q|) from a population P, species coverage (cov) indicates
the extent to which the discovered species cover the probability
space [3]. If f1 denotes the singletons (number of species
observed once) and f2 denotes the doubletons (number of
species observed twice) in sample Q, then the species coverage
can be calculated as [20]:

cov = 1 −
f1
q

[
(q − 1) f1

(q − 1) f1 + 2 f2

]
. (1)

If a log L is viewed as a sample, its traces as species, and with
T1 and T2 respectively the number of traces of frequency 1
and 2 in L, then the representativeness (rep) of L is similarly
able to be estimated by [3]:

rep = 1 −
T1

|L|

[
(|L| − 1)T1

(|L| − 1)T1 + 2T2

]
. (2)

C. Bootstrap Generalization

Generalization assesses a model’s ability to capture the
behavior of the underlying system, including all previously
unseen behaviors. Let M be the universe of all models, let
S be the universe of all systems, and capture generalization
via a function gen : M × S → [0, 1]. In this framework
gen(M, S ) = 1 signals that M exactly describes the behavior of
S (lang(M) = lang(S )); and gen(M, S ) = 0 signals that M does
not describe any of the behavior of S (lang(M)∩ lang(S ) = ∅).
The better M generalizes S , the larger the value of gen(M, S ).

If a system is unknown and a log is the only available
footprint of the system, then one must rely on a generalization
estimator gen∗ : M×L → [0, 1], where L is the universe of

all possible logs. Hence, gen∗(M, L) can be used to compute
an estimate of gen(M, S ) based on observed log L ∈ L of S .

Bootstrap generalization [4] estimates the underlying sys-
tem from a log, employing the bootstrapping concept from
computational statistics, which estimates the distribution of a
population using a single sample. With L as a sample of system
behavior lang(S ), bootstrap generalization follows two steps
to estimate the generalization of model M using log L:

1) Estimate lang(S ) (lang∗(S )) using L and compute k ∈ N
number of bootstrap logs of size n ∈ N using lang∗(S ). One
bootstrap log will be denoted by L′.

2) For each L′ and M, calculate gen∗(M, L′) and aggregate the
values to obtain the generalization estimation of M.

For step 1, we employ a log sampling method to generate
a random sample log L′ of size n. For our experiment, we
utilize the Log Sampling With Breeding method, denoted as
LSMbr(L, n, g, l) [4], which involves the generation of logs
by breeding pairs of logs through some specified number of
generations, denoted as g ∈ N. Each log in the sequence arises
from breeding the original log L with a log in the previous
generation. As g grows, log diversity tends to also increase,
with each generation displaying more variations.

Each breeding step involves randomly selecting a trace t1
from L and a trace t2 from the previous generation, and
performing crossover. Provided that t1 and t2 share a subtrace
of contiguous activities of some minimum length (denoted
by l), two offspring traces are constructed. The first offspring
is constructed by taking the prefixes of t1 prior to the common
subsequence, then the subsequence, then the suffix of t2 after
the common subsequence. The second offspring is obtained
using the same operation but after swapping the roles of traces
t1 and t2. If t1 and t2 do not have a common subsequence, both
are included in the next generation.

If the unknown system can be expressed as a directly-
follows graph (DFG), it holds that if t1 and t2 are true
system traces, then their offspring traces are also true system
traces [4]. As the crossover subtrace length (l) increases,
the probability that t1 and t2 share a subtrace of at least
l decreases. Higher l values thus reduce the likelihood of
successful crossovers.

The second step computes gen∗(M, L′) for each log sample
L′ generated by k iterations of Step 1. Given a model M of a
system S , for a measure of the magnitude of a language m, one
can compute generalization gen(M, S ) as the model-system
precision (or recall) quotient [19], comparing the language of
the model (lang(M)) to that of the system (lang(S )):

gen(M, S ) = precm(M, S ) =
m(lang(M) ∩ lang(S ))

m(lang(M))
, or (3)

gen(M, S ) = recm(M, S ) =
m(lang(M) ∩ lang(S ))

m(lang(S ))
. (4)

By utilizing model-system precision or recall values as gen-
eralization measures, we can effectively evaluate the model’s
ability to capture the behavior of a known system [4].



We then define gen∗(M, L′) as:

gen∗(M, L′) = precm(M, L′) =
m(lang(M) ∩ lang(L′))

m(lang(M))
, or (5)

gen∗(M, L′) = recm(M, L′) =
m(lang(M) ∩ lang(L′))

m(lang(L′))
. (6)

We use the entropy-based measure [19] as the measure m,
allowing measurement in situations where models, systems,
and their intersections describe infinite collections of traces.

Once gen∗(M, L′) is computed for M and each L′, the
average value serves as the bootstrap generalization estimation
(gen∗) for a given model M and log L:

gen∗k,n,g,l(M, L) =
1
k

k∑
i=1

gen∗(M,LSMbr(L, n, g, l)) . (7)

Bootstrap generalization is a consistent estimator of gener-
alization for the class of systems expressed as DFGs [4]. If L is
noise free (all traces are system traces), the larger the sample
size (n) and the more samples (k) are used, the more accurately
Eq. (7) estimates the true generalization (gen(M, S )).

IV. Log Quality and Generalization

We now present an approximation for log representativeness
(Section IV-A); detail our exploration of the relationship
between log representativeness and generalization estimation
(Section IV-B); describe the datasets used in the experiments
(Section IV-C); and discuss the results (Section IV-D).

Our experimental resources are publicly available.1

A. Log Representativeness Approximation

Unless the generative system is dynamic, as new traces
are collected the likelihood that each observed trace has not
been observed before decreases, a form of diminishing returns.
That is, as more traces are sampled from a static system, the
sample space becomes more thoroughly explored [21]. This
relationship is illustrated in Fig. 1a, covering three publicly
available logs from BPI Challenge 2013 [22]. It is clear that
as observations are accumulated, the trend gradient decreases.

Motivated by this idea, we present Trace-Based Log Rep-
resentativeness Approximation (TLRA) to quantify how well
a log captures all the distinct traces the system can generate.
Given an event log L, TLRA(L) is defined as:

TLRA(L) = 1 −
|lang(L)|
|L|

, (8)

and estimates the probability that an additional trace has been
seen previously in L. As illustrated in Fig. 1b, TLRA values
increase with the accumulation of traces, providing a quanti-
tative approximation of the log’s growing representativeness
of the system’s behavior.

This approximation exhibits a remarkable 99.43% correla-
tion2 (95% CI: [99.38%, 99.47%]) with Kabierski et al.’s log
representativeness measure across 2,400 diverse logs described

1https://github.com/jbpt/codebase/tree/master/jbpt-pm/gen/bootstrap
2Refer https://doi.org/10.26188/26410747 to access the accompanying data.

Closed Problems Open Problems Incidents

0

25

50

75

100

0 25 50 75 100

Fraction of total traces (%)

F
ra

c
ti
o

n
 o

f 
d

is
ti
n

c
t 

tr
a

c
e

s
 (

%
)

(a) Distinct and total trace fractions

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Fraction of total traces (%)

T
L
R
A

(b) TLRA and fraction of total traces

Fig. 1. Fraction of distinct traces and TLRA as a function of fraction of total
traces of three BPI Challenge 2013 logs [22].

in detail in Section IV-C. The measure by Kabierski et al. [3]
draws on the concept of sample coverage in species discovery,
defined as “how much of the probability space is covered by
the discovered species.” In contrast, TLRA focuses solely on
the variety of traces encountered, without considering their
frequencies. To facilitate a more direct comparison, we could
adjust the species coverage concept by assuming an equal
likelihood of encountering each trace. This simplifies coverage
to the ratio of unique classes in the sample to the total number
of classes in the population [23], which also necessitates
further computations to estimate the entire population. Despite
these fundamental differences in the underlying concepts, the
strong correlation suggests that for process mining applications
TLRA might be a viable alternative to calculate log represen-
tativeness. While we focus on a trace-based approximation in
this work to better align with the behavioral aspect addressed
in generalization, this method can be trivially adapted to other
aspects, such as directly-follows relations or activities.

B. Experimental Design

To explore the relationship between the log representative-
ness and generalization estimation we have conducted a large
experiment using bootstrap generalization [4] and the proposed
TLRA method to measure log representativeness.

The experiment was conducted in two phases. In the first
phase we analyzed data drawn from a very large universe
of possibilities, exploring various combinations of parameters
and models (described in the next subsection). That analysis
covered a range of log conditions, including different log sizes,
and both clean and noisy logs, the latter with varying noise
levels. To ensure the reliability of the bootstrap generalization
estimation against log quality and to minimize the impact
of parameter settings, we also examined a broad range of
bootstrap parameters. The influence of these parameters on
generalization estimation is detailed in Section III-C. The
specific parameter values employed are listed in Table I.

Calculating all 8 × 5 × 7 × 4 × 7 × 3 = 23,520 possible
parameter combinations, across 60 different systems (Sec-
tion IV-C) would be a huge amount of effort, 1,411,200

https://github.com/jbpt/codebase/tree/master/jbpt-pm/gen/bootstrap
https://doi.org/10.26188/26410747


TABLE I. Experiment parameters and their values for phase 1 analysis.

Parameter Values

Log size (logSize) 128, 256, 512, 1024, 2048, 4096, 8192, 16,384
Noise level (noise) 0.00%, 0.25%, 0.50%, 0.75%, 1.00%
Sample size (n) 1024, 2048, 4096, 8192, 16,384, 32,768, 65,536
Number of samples (k) 8, 16, 32, 64
Log generations (g) 1024, 2048, 4096, 8192, 16,384, 32,768, 65,536
Crossover subtrace length (l) 1, 2, 3

computations in total. Instead, parameters were independently
randomly chosen in each experimental dimension and coupled
with a random dataset, checking that the combination had
not been used previously. Our objective was not to run the
entire experiment, but to randomly explore the space, seeking
insights into generalization estimation, supported by experi-
mental evidence. After eight months of execution on multiple
processors, covering 3,824 instances and thus 0.27% of all
combinations, we halted the first phase, tuned the parameter
ranges, and transitioned to a more targeted second phase.

For the second phase we made a number of changes.
• The constraint n > logSize was identified as such that in-

creases the chances of exploring system traces not included
in the log; otherwise, it is challenging to improve the esti-
mation of the model-system precision. To further maximize
these chances, in phase 2, we required n > 4 × logSize.

• Smaller number of samples risked limited coverage of the
population, sometimes leading to high variability in the
results. In phase 2 we added k = 128 as an option.

• Varying g did not affect the results in any clear manner,
and the breeding process might converge before reaching
the maximum number of generations. In phase 2 a reduced
(and faster!) range g ∈ {32, 64, 128, 256} was employed.

• A new limitation of n > 8 × g was introduced, to avoid sit-
uations where offspring traces dominate bootstrapped logs.

• The experimentation was restricted to logs of more limited
sizes, logSize ∈ {256, 512, . . . 4096}: noise levels, noise ∈
{0, 0.5, 1}; with subtrace lengths (l) unchanged from phase 1.

Across the 60 system models the new restrictions lead to 5,508
different parameter combinations and 42,660 test instances
(not all parameter combinations apply to every system). At
time of writing, some 12.91% of those have been computed,
after a further 11 months of computation, again using multiple
processors. As with phase 1, the experiment was structured so
that configurations were explored via randomized selection in
each parameter dimension. Despite the (mere) 12.91% current
status, our analyses already yield meaningful results.

C. Experimental Datasets

We used 60 publicly available system models represented
as DFGs [24] that have been studied in the context of
stochastic conformance checking techniques [25]. These were
constructed using the Snap tool of Celonis SE from three event
logs: Road Traffic Fine Management Process (RTFMP) [26],
Sepsis Cases [27], and BPI Challenge 2012 [28]. The dataset

contains 20 DFGs discovered from each log, using two dif-
ferent techniques (“PE” and “VE”).3 Ten parameter configura-
tions were applied to each of the two, to ensure that the DFGs
reflected the system processes at various levels of detail.

A total of 2400 logs were generated in two stages. First,
noise-free logs of various sizes were generated from each
DFG, by simulating “random walks” from the source to the
sink nodes, an approach consistent with the original evaluation
of the bootstrap method [4], with steps taken to homogenize
the traces across different log sizes to ensure continuity and
to replicate the trace accumulation described in Fig. 1a. Noise
was then introduced to each log, as required. This involved
randomly swapping two activities within a randomly selected
trace, an approach that has also been employed elsewhere [29].
The noise level, specified as a percentage in Table I, indicates
the proportion of traces made noisy. Logs with higher noise
levels incorporated the noisy traces from the lower levels.

Algorithm 1 SimpleDFGDiscovery(L)
Input: Event log L
Output: DFG control flow as directed graph (V, E) with source Vsrc and sink Vsnk

1: (V, E)← ({Vsrc,Vsnk} ,∅), where Vsrc < A and Vsnk < A
2: for t ∈ lang(L) do ▷ for each trace t in L
3: for i ∈ [1 .. |t|] do ▷ for each position i in trace t
4: V ← V ∪ {t (i)} ▷ add activity at position i in t to nodes
5: if i = 1 then
6: E ← E ∪ (Vsrc, t (1)) ▷ add arc from Vsrc to the first activity in t
7: else
8: E ← E ∪ (t (i − 1), t (i)) ▷ add arc between consecutive activities in t
9: if i = |t| then

10: E ← E ∪ (t (i),Vsnk) ▷ add arc from the last activity in t to Vsnk
11: end if
12: end if
13: end for
14: end for
15: return (V, E)

We next discovered one process model, as a DFG, for each
generated event log, using the approach shown in Algorithm 1.
For a trace t, in the algorithm, by t (i), we denote the activity
at position i ∈ [1 .. |t|] in t. As we operated in a non-stochastic
setting, we omitted the computation of node and arc weights.

To ensure diverse precision and recall characteristics of
discovered DFGs, each event log was preprocessed, so as
to prevent over-fitting. First, we employed the Log Sampling
With Breeding (LSMbr) method to generate a condensed subset
of traces, capturing essential behavior observed in the log.
Following this, controlled alterations were introduced in the
log, again, by swapping random activities in random traces.
We made the code we used for generating the event logs and
DFGs publicly available. These manipulations ensured that the
discovery process resulted in models of varying quality with
respect to the original event log. Indeed, a good generalization
estimator should provide reliable estimation for both high- and
low-quality models.

D. Results
We now present the results of phase 2 of our study; note

that phases 1 and 2 (to date) have consumed 2.5 and 14.6

3For information on EMS Process Explorer and Variant Explorer refer to
https://go.unimelb.edu.au/2iu8; last accessed on 11 August 2024.

https://www.celonis.com/blog/celonis-ems-process-explorer-and-variant-explore-whats-the-difference/


CPU-years of computation, respectively.4 The results obtained
demonstrate a high degree of reliability, because the entropy-
based measures meet all desired properties for accurately
measuring precision and recall values between models and
logs [30] and ensure monotonicity of assessments for model-
system precision and recall. Indeed, only a few process mining
experiments of this magnitude incorporate such precise com-
putation of model-system conformance.

In Fig. 2 gain is measured as a difference between, on
the one hand, the errors in estimating model-system precision
and recall using the log as the only knowledge about the
system, and, on the other hand, using the bootstrap method
with the event log as the input. The ground truth values
of model-system precision and recall are computed using
Eqs. (3) and (4), and the bootstrap estimates are obtained using
Eq. (7) utilizing Eqs. (5) and (6) for measuring precision and
recall between the models and bootstrap sample logs; with
all of the precision and recall measures instantiated for the
entropy-based language measure [19]. Positive gain suggests
that bootstrap estimate is closer to the ground truth for the
corresponding value, whereas negative gain states that model-
log estimation outperforms bootstrapping.

Overall, Fig. 2 confirms our hypothesis: smaller logs tend
to exhibit lower representativeness, suggesting their limited
ability to reflect the underlying system. As representativeness
increases, larger log sizes become prominent.

Analyzing the relationship between generalization estima-
tion accuracy and representativeness in more detail, we find
that for clean logs, high representativeness suggests limited
benefit from bootstrapping. When most system behavior is
already captured in the log, bootstrapping offers little oppor-
tunity to discover new behaviors. In such cases, using the
log itself as the system provides a generalization estimate.
Conversely, less representative logs offer greater potential for
uncovering new behavior through bootstrapping. This relation-
ship is more pronounced for precision than for recall. The
interquartile range method has shown that significant gains in
model-system precision are obtained for log representativeness
below 0.4, across all log sizes and noise levels.

Noisy logs reveal negative gain values and larger deviations
from the ground truth after bootstrapping, particularly when
representativeness is high. This occurs because bootstrapping
using noisy traces tends to amplify noise, and because, for a
given noise level, larger logs contain a higher absolute number
of noisy traces. Interestingly, noisy logs exhibit negative gain
values for recall estimations across a wider range of repre-
sentativeness values. This suggests that model-system recall
is more sensitive to the presence of noise in the event log.

V. Precision Versus Recall
Section IV suggests that the bootstrap method estimates

model-system precision better than model-system recall. We
now consider the reasons behind that phenomenon.

A trace t in a bootstrap sample log L′ can be associated
with one of the eight scenarios depicted in Fig. 3a:

4Refer to https://doi.org/10.26188/26410486 for the generated data.
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(c) Precision gain on noisy logs
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(d) Recall gain on noisy logs

Fig. 2. The impact of bootstrapping on model-system precision and recall
estimates for clean and noisy logs in phase 2 of our study. Positive values
indicate improvement relative to the ground truth.
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Fig. 3. (a) Venn diagram illustrating possible outcomes for a bootstrapped
trace; (b) impact on measurement of adding a fresh trace to a bootstrap sample
log: measurement either increases (↑) or does not change (—).

1) A fresh true system trace not described in the model,
t ∈ (S \ (M ∪ L));

2) A fresh true system trace described in the model, t ∈
((S ∩ M) \ L);

3) A fresh trace described in the model the system cannot
generate, t ∈ (M \ (S ∪ L));

4) A fresh trace not described in the model the system
cannot generate, t < (S ∪ M ∪ L);

5) A log trace not described in the model the system cannot
generate, t ∈ (L \ (S ∪ M));

6) A log trace described in the model the system cannot
generate, t ∈ ((L ∪ M) \ S );

7) A true system trace from the log described in the model,
t ∈ (L ∩ S ∩ M); and

8) A true system trace from the log not described in the
model, t ∈ ((S ∩ L) \ M).

Scenarios 1, 2, 7 and 8 refer to successful outcomes, as the
bootstrapped trace is a genuine trace of the system. On the
other hand, scenarios 3 to 6 are unsuccessful, and correspond
to situations when the system cannot generate the bootstrapped
trace, and distortion arises. Scenarios 1 and 2 unveil additional
system traces not present in the event log, while scenarios 7
and 8 preserve system traces recorded in L into L′.

A bootstrap sample log L′ aims to estimate the traces of the
system and is used to estimate model-system precision and re-
call (Eqs. (5) and (6)). Polyvyanyy et al. [19] demonstrate that
the entropy-based measure m that is utilized for bootstrapping
model-system precision and recall in this work is an increasing
measure that starts at zero. A measure m over sets of traces is
(strictly monotonically) increasing if and only if for two sets
of traces X and Y such that X ⊂ Y it holds that m(X) < m(Y),
while it starts at zero if m(∅) = 0.

Assuming that m starts at zero and is increasing, the impact
of each scenario depicted in Fig. 3a on estimated precision
and recall values is summarized in Fig. 3b.

Referring to Fig. 3b, the impact of a new bootstrapped
trace on precision and recall estimations is consistent for
scenarios 1, 4, 5 and 8 and scenarios 2, 3, 6 and 7, and

depends on whether the model describes the trace. As m is
an increasing measure, if a fresh trace t is added to L′, the
value of m(lang(L′)) increases, denoted by the “↑” symbol in
the table. In scenarios 1, 4, 5 and 8, because t < M, the set
lang(M)∩lang(L′) does not change. Consequently, the quantity
m(lang(M) ∩ lang(L′)) does not change, denoted by the “—”
symbol in Fig. 3b. In scenarios 2, 3, 6 and 7, however, as it
holds that t ∈ M, it also holds that t ∈ lang(M)∩ lang(L′). As
the result, the measurement m(lang(M) ∩ lang(L′)) increases.

A discovery algorithm aims to construct a model that
describes the system well. Assume that this aim is achieved,
and that model M describes system S , and thus it holds that
lang(M) ≈ lang(S ). It then further holds that precm(M, S ) ≈ 1
and recm(M, S ) ≈ 1. Therefore, it is desirable that the inclusion
of a fresh trace into L′ increases precm(M, L′) and recm(M, L′).

When the model does not describe a bootstrapped trace,
m(lang(M)∩ lang(L′)) is unaffected. As m(lang(M)) also does
not vary, no change will occur in precm(M, L′). Or, if the model
describes the trace, the increase of m(lang(M) ∩ lang(L′))
increases precm(M, L′),5 since the denominator is unchanged.
Moreover, m starts at zero and ensures non-negative measure-
ments. Consequently, estimated model-system precision never
decreases, aligning the bootstrap generalization estimation
more closely with the ground truth value.

If the model does not describe a bootstrapped trace,
m(lang(L′)) increases and m(lang(M) ∩ lang(L′)) remains un-
changed. This causes recm(M, L′) to decrease due to the fixed
numerator and increasing denominator6, resulting in a magni-
fied deviation from the ground truth value. When the model
describes the bootstrapped trace, since both m(lang(M) ∩
lang(L′)) and m(lang(L′)) increase, the effect on recm(M, L′)
is uncertain, as it depends on the relevant increase in
m(lang(M) ∩ lang(L′)) to the increase in m(lang(L′)).

Therefore, given an effective process discovery algorithm, it
is reasonable to expect that bootstrapping will yield more pre-
cise estimates for model-system precision compared to model-
system recall, aligning closely with the actual relationship
between the models and systems.

VI. Conclusion

We introduced Trace-Based Log Representativeness Ap-
proximation (TLRA), a simple approximation for assessing
trace-based log representativeness that demonstrates 99.43%
correlation with Kabierski et al.’s representativeness measure.

We then explored the relationship between log representa-
tiveness and generalization estimation, focusing on the boot-
strap generalization approach. Experiments involving many
systems, a wide range of parameter settings, and a huge
amount of CPU time provided statistically robust insights into
the interplay between log representativeness and generalization
estimates, confirming that the representativeness of a log
impacts generalization estimation accuracy.

5Refer to Proposition 5.5 for the “precision monotonicity” property [19].
6This property is also referred to as the “fixed denominator quotients”

property, see Lemma 4.3 by Polyvyanyy et al. [19].



Our experimental findings empirically demonstrate the im-
portance of measuring log representativeness before applying
complex system estimation techniques. When log representa-
tiveness is high, utilizing the log itself as the system may
suffice, and additional estimation could potentially lead to
deviation from the actual values, especially in the presence of
noise. Furthermore, the study highlights the bootstrap method
as a robust approach for estimating model-system precision,
particularly effective with smaller or less representative logs.
Our analysis also explained why the bootstrap method is more
accurate for precision compared to recall.

In future work we will investigate the direct impact of log
representativeness on process discovery, aiming to understand
its interaction with the effectiveness of different discovery
algorithms. Additionally, we will extend the TLRA method
to directly-follows relations-based representativeness. Such
expansion could serve as a completeness estimator in line with
the one proposed by Măruşter et al. [29], where a complete log
includes all directly-follows relations in the system in at least
one trace. This analysis could contribute to the development
of completeness estimators that are better suited for real-
world applications involving noisy logs and infinite systems.
Exploring how event log representativeness influences the
performance of predictive process monitoring techniques is
another future direction for this research. By analyzing the
relationship between log representativeness with the accuracy
and reliability of predictive models, the overall effectiveness
of predictive process monitoring can be improved. This would
ensure that models are trained on reliable and informative data,
ultimately leading to more accurate insights.
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